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Biological networks have an inherent simplicity: they are modular
with a design that can be separated into units that perform almost
independently. Furthermore, they show reuse of recurring pat-
terns termed network motifs. Little is known about the evolution-
ary origin of these properties. Current models of biological evo-
lution typically produce networks that are highly nonmodular and
lack understandable motifs. Here, we suggest a possible explana-
tion for the origin of modularity and network motifs in biology. We
use standard evolutionary algorithms to evolve networks. A key
feature in this study is evolution under an environment (evolu-
tionary goal) that changes in a modular fashion. That is, we
repeatedly switch between several goals, each made of a different
combination of subgoals. We find that such “modularly varying
goals” lead to the spontaneous evolution of modular network
structure and network motifs. The resulting networks rapidly
evolve to satisfy each of the different goals. Such switching
between related goals may represent biological evolution in a
changing environment that requires different combinations of a
set of basic biological functions. The present study may shed light
on the evolutionary forces that promote structural simplicity in
biological networks and offers ways to improve the evolutionary
design of engineered systems.

iological and engineered systems share general design features:

they display modularity, defined as the separability of the
design into units that perform independently, at least to a first
approximation (1-3, 5)." Furthermore, they show reuse of certain
circuit patterns, termed network motifs (6-11), in many different
parts of the system. These features allow construction of extremely
complex systems by using simple building blocks (12).

These features of biological networks are not captured by most
current models of biological evolution. For example, many models
of biological evolution use computers to evolve networks to attain
a defined goal. In these simulations, networks in a population are
varied by means of mutations, crossover, and duplication (13-15).
Networks that perform better are selected in the next generation.
A well known feature of these computational models of biological
evolution is that the evolved systems are usually intricately wired
and nonmodular. The nonmodular solutions are often more highly
optimized than their human-engineered counterparts (16, 17, 20).

The fundamental reason for the lack of modularity in these
evolved networks is that modular structures are usually less optimal
than nonmodular ones. Typically, there are many possible connec-
tions that break modularity and increase fitness. Thus, even an
initially modular solution rapidly evolves into one of many possible
nonmodular solutions.

Lack of modularity is one of the reasons that computational
evolution can currently generate designs for simple tasks, but has
difficulty in scaling up to higher complexity. In the field of evolu-
tionary design of engineered systems, approaches have been de-
veloped to promote modularity. These include enforcement of
regular structures by using tree architectures (1) or generative
grammars (21). Other methods explicitly represent subsystems as
modules and use them as building blocks, such as module libraries
(22) and automatically defined functions (23). These approaches
significantly improve artificial design. The main difference between
these approaches and natural biological evolution is that they use
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high-level processes to preserve modularity against mutational
forces. Many of these high-level processes are not currently known
in biology.

To understand the origin of modularity and network motifs in
biology one has to understand how these features can spontane-
ously evolve. Several studies suggested that duplication of sub-
systems (24) or selection for stability (25) or robustness (26) can
promote modularity. H. Lipson and coworkers (27, ) suggested
that modularity can spontaneously arise under changing environ-
ments. This suggestion is based on the expectation that designs with
higher modularity have higher adaptability and therefore higher
survival rates in changing environments. However, computer evo-
lution simulations under randomly changing environments do not
seem to be sufficient to produce modularity (25, 27).

Here, we build on the suggestion of Lipson et al. (25, 27, T). The
key feature in our study is evolution under an environment (evo-
lutionary goal) that changes with time in a modular fashion. That
is, we repeatedly switch between several goals, each made of a
different combination of subgoals. We find that such modularly
varying goals lead to the spontaneous evolution of modular struc-
ture and network motifs.

Methods

Electronic Circuit Evolution. Circuits were represented by a binary
genome with a fixed number of genes that encode NAND gates and
one gene for each output. Each generation of the best L circuits
passed unchanged to the next generation [elite strategy (28)]. Each
circuit was randomly mutated (mutation probability P, = 0.7 per
genome). A fitness penalty of 0.2 was given for every gate above a
predefined number of effective gates (11 gates for the circuits in Fig.
2), where we define “effective gates” as gates with a directed path
to the output. Genome and genotype—phenotype mapping are
described, respectively, in Fig. 6 and Table 1, which are published
as supporting information on the PNAS web site. For Fig. 2, the
population size was S = 1000 and L = 300, and for Fig. 4, S = 2000
and L = 500. Similar results were found under a range of the
parameters, such as larger populations and smaller mutation rates,
and when using both a crossover operator (15) and mutations.

Neural Network Evolution. The neural network (29) genome was of
a fixed size of 15 genes each encoding a neuron (see Fig. 7 and Table
2, which are published as supporting information on the PNAS web
site). The neurons were set in four layers with eight, four, two, and
one neuron per layer. Connections were only between neighboring
layers in a feed-forward manner. Connections from the retina were
to the first layer only. The output was defined as the neuron at the
fourth layer. Each neuron was given a maximal number of incoming
connections as follows: three inputs for a neuron in the first, second,
and third layer and two inputs for a neuron in the fourth layer. Each
connection had weight —1 or 1. If two of the inputs were from the
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same neuron then the effective weight of the connection was the
sum of the weights of the two connections. A penalty of 0.01 was
applied for every additional neuron above a predefined number of
neurons (here we used 13 neurons). Mutations and crossovers were
used as evolutionary operators, with elite strategy, with S = 600 and
L = 150. Crossover probability was P, = 0.5. Mutation probability
was Pp, = 0.5 per genome.

Quantitative Measure of Modularity. To quantify network modu-
larity we used a measure based on the approach of Newman and
Girvan (31, 32). Briefly, the Newman and Girvan algorithm finds
the division of the nodes into modules that maximizes a measure
Q. This measure is defined by the fraction of the edges in the
network that connect between nodes in a module minus the
expected value of the same quantity in a network with the same
assignment of nodes into modules but random connections
between the nodes (33):
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where K is the number of modules, L is the number of edges in the
network, /; is the number of edges between nodes in module s, and
d, is the sum of the degrees of the nodes in module s. The rationale
for this modularity measure is as follows (following ref. 33): a good
partition of a network into modules must comprise many within-
module edges and as few as possible between-module edges.
However, if we try to minimize the number of between-module
edges (or equivalently maximize the number of within-module
edges), the optimal partition consists of a single module and no
between-module edges. Eq. 1 addresses this difficulty by imposing
Q = 0 if nodes are placed at random into modules or if all nodes
are in the same module.

We further refined this measure by normalizing it with respect to
randomized networks. We defined a normalized measure Qy,:

Qm = (Qreal - Qrand)/(Qmax - Qrand)a [2]

where Qpea is the QO value of the network, Q.nq is the average Q
value of randomized networks, and Q. is defined as the maximal
possible Q value of a network with the same degree sequence as the
real network. To compute Oy, we first converted the network into
a nondirected graph by ignoring edge directionality and calculated
itS Qrea. To measure Qang We used two different controls that
yielded similar results. For the first control, we used randomized
networks that preserve the degree sequence of the real network.
For the second control, we computed the Q of networks coded by
random genomes that mapped to networks with the same number
of nodes as in the real network, using the same genome definition
and genotype—phenotype mapping as in the experiment. We used
1,000 random networks for computing Q;and.

To estimate QOmax We repeated the evolution simulations, with
exactly the same settings (i.e., network size and evolution param-
eters), where instead of evolving the networks toward the original
information processing goal, we define the goal as maximizing the
modularity measure Q. Omax Was defined as the average Q over 100
simulations of the best evolved network.

The present O, measure of modularity normalizes out the
effects of the details of the simulations, such as the genotype—
phenotype mapping, and the evolutionary algorithm. We also
used this measure to quantitate the modularity of three biolog-
ical networks. All showed high modularity: The transcription
network of the bacterium Escherichia coli (7) had Oy, = 0.54, the
neuronal synaptic network of the nematode Caenorhabditis
elegans (7) had On = 0.54, and a human signal transduction
interaction network (34) had Oy, = 0.58. Modularity measure-
ments results are summarized in Tables 3-5, which are published
as supporting information on the PNAS web site.
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Detection of Network Motifs. Network motifs were detected by
using previously described algorithms (6, 7). To detect network
motifs, we counted the number of appearances of different
subgraphs in the evolved (“real”) network and compared it with
the number of times they appeared in randomized networks. The
randomized networks preserved the single-node characteristics
of the real network, such as the incoming and outgoing degree
sequence (and the layered structure in the case of neural
networks, see Supporting Text, which is published as supporting
information on the PNAS web site).

To display the network motifs and antimotifs for each network we
computed a nonnormalized subgraph significance profile as de-
scribed (8). Briefly, for each real network we used MFINDERI.2
software to find the significance of all three- and four-node
subgraphs (network motifs detection tool). The significance profile
is composed of the Z-score for each subgraph [Z = (Nyea —
Nrand)/0, where Niea and Npung are the counts in the real and
average count in the randomized networks, respectively, and ois the
SD in the randomized networks]. To correct for multiple hypothesis
testing, we also evaluated the Z-score distribution by choosing a
randomized network as the real network and comparing it with an
ensemble of 100 other randomized networks. In all cases this
process yielded 1Z1 < 0.2, much lower than the values of motifs
found in the real networks.

Supporting Information. Further information is available in Figs.
6-9, Supporting Text, and Tables 1-6, which are published as
supporting information on the PNAS web site.

Results

We used two well studied model systems. The first system was
electronic combinatorial logic circuits. The circuits are composed of
a single type of gate, NAND (the NOT-AND function). The circuit
has several inputs, labeled X, Y, Z, W, etc. NAND-gates are
universal, in the sense that any logical function can be implemented
by circuit composed of NAND gates.

The goal for evolution is a logical function G. The fitness of a
circuit is the fraction of times it gives the correct output, G, when
evaluated over all possible combinations of Boolean values of the
inputs. We applied a standard evolutionary algorithm (13-15) to
seek a circuit that maximizes fitness and thus achieves the goal (20,
35). We start with a population of random genomes that represent
randomly wired circuits. For each generation, each circuit has a
preset probability (mutation rate) of a random change in one of the
connections between its gates. Circuits with low fitness are removed
from the population, and circuits with a high fitness are replicated,
keeping a fixed population size. The process is then repeated.

We first evolved circuits toward a fixed goal,

G1 = (X XOR Y) AND (Z XOR W), [3]

where XOR is the exclusive-or function. The fitness of the popu-
lation increased over time. A prefect solution was found within 10°
generations in 36 of 50 experiments. In the successful experiments
a perfect solution was found within 9,000 (+19,000, —2,000)
generations (Fig. 1a, fitness vs. generations). Many different circuits
that achieve a perfect solution were found in these experiments.
Most perfect solutions used n = 10 gates. A typical solution is shown
in Fig. 2a.

Despite the fact that the goal G1 can be decomposed into
subproblems (e.g., two XOR and one AND operations), the
architecture of the evolved circuits was almost always nonmodu-
lar. To quantify modularity of the circuits we used a modularity
measure O, (see Methods). Nonmodular networks show O, =0,
whereas modular networks typically show O, values between 0.3
and 1. The evolved circuits show very low modularity: Oy, =
0.12 = 0.02.

Kashtan and Alon



Lo L

P

1\

=y

a | Fixed goal evolution
LIS
08
w
§ max fitness
[ Ly mean fitness
06
05+
040 f000 2000 3000 4000 5000 600D 7000 8000 900D 10000
Generation
b Modularly varying goals evolution
1+
| 1L L]
A4 i WL |
" I | i M
1o [ WP | ot BT M, .1’|, & |
Mg | remtoen
o 4 1 mean fitness
E 0.7 o8 - | |
D.E.. o 1
ogh a7 5 | 7
o8 |/ s
0.5 50 epochs 161962 G261
T B840 BEBE0 BGE0 BETOD
! =~
U“O 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Generation

d Tetrads Zscore Profile

MVG networks
! | —=—Fixed goal networks

¢ Triads Zscore Profile
[~ MVGnetwors |

]

2t

mean Zscore

- R )

Mean Zscore
L=] —"

:

<

-

" MA(AGGIAADRA

Subgraph

12345678 910111213
AV | A7V ATIVA
Subgraph

Fig. 1. Evolution of electronic circuits toward fixed and modularly varying
goals. (a) Fitness as a function of generations under a fixed-goal G1 as defined
in the text. Red indicates the best circuit in the population; gray indicates
mean fitness. (b) Fitness as a function of generations under modularly varying
goals evolution toward goals G1 and G2. The goal was switched every 20
generations. Fitness is shown in 20 generations resolution, just before every
goal switch event. (Inset) Zooms into fitness around two switching events. The
fitness drops and then recovers after each switch of the goal. (c) Significance
of all three-node subgraphs compared with randomized networks. Mean
Z-score * SE is shown for ~100 networks. Red circles indicate networks
evolved under modularly varying goals (MVG); black squares indicate net-
works evolved under fixed-goal evolution to G1 and G2. The absolute signif-
icance of all subgraphs in corresponding random networks for both types of
networks is <0.2. (d) Significance of four-node subgraphs. The four-node
subgraphs displayed were selected as follows: for each type of network the 10
subgraphs with highest absolute Z-scores were selected. The 12 subgraphs
shown are the union of the selected subgraph sets for the different networks.

Because of their nonmodular structure and intricate wiring, it was
challenging to intuitively understand the way that these circuits
function.

Next, we performed evolution in which the goal changed peri-
odically between two different functions. Importantly, the two
functions had shared subproblems. We term this approach “mod-
ularly varying goals.” For example, we used goal G1 for an epoch
of E = 20 generations, and then switched the goal to a similar
function G2 in which two XOR computations are linked by an OR
rather than an AND:

G2 = (X XOR Y) OR (Z XOR W). [4]

Kashtan and Alon

We continued to switch between the goals every E = 20 genera-
tions. These switches were rapid in comparison to the total number
of generation in the experiment, so that every evolutionary exper-
iment included many switches. A perfect solution was found in all
50 experiments in <10,000 generations (mean time to perfect
solution was 1,400 = 1,000 generations).

We found that the evolved circuits were able to adapt to perfect
solutions for each of the two goals. Every time the goal switched the
population was able to reach a perfect solution to the new goal
within about five generations and remained perfect until the next
switch. These evolvable solutions lasted for many epochs (Fig. 1b).

The structure of the evolvable circuits found in these experiments
is highly modular. Their modularity is readily apparent by eye and
can be also be quantified by the modularity measure yielding
significant modularity Oy, = 0.54 = 0.02. Two different examples
are shown in Fig. 2 b and c. The solutions are composed of two
identical modules, each performing a XOR computation, and a
third module that performs AND or OR on the output of the
XORs. Notably, the XOR modules, each made of four NAND
gates, are precisely the minimal XOR implementation used in
electronic engineering (36, 37). In each experiment, the difference
between the perfect solutions for the two goals differ by two
connections. This small difference explains how the population can
rapidly adapt when the goal is switched (Fig. 1b).

The evolvable solutions were larger than the fixed-goal solutions
and usually used n = 11 gates, as opposed to n = 10 gates in the
solutions evolved under fixed-goal evolution.

We also analyzed the network motifs in the circuits that evolved
under fixed goals and modularly varying goals. Network motifs were
detected by comparing the subgraphs found in the evolved networks
to those found in randomized networks with the same number of
connections per gate. We found that solutions evolved under
modularly varying goals have significantly more network motifs
than fixed-goal solutions (Fig. 1 ¢ and d): they display recurring
patterns such as feed-forward loops and diamonds (subgraph 7 in
Fig. 1c and subgraph 5 in Fig. 1d, respectively).

We also evolved circuits under varying goals that were nonmodu-
lar. For this purpose, we used random logic functions as goals and
switched between them as described above. We found that the
evolved networks typically had nonmodular architecture and no
network motifs (see Supporting Text). These networks seemed to
“forget” the previous goal and attempt to find a solution to the new
goal from scratch. The same applies to cases in which one problem
was G1 or G2, and the other problem was a random four-input logic
function.

Next, we performed experiments where evolution started with a
modular circuit, but under a fixed goal. We find that modularity
decreased rapidly within a few tens of generations provided there
is even a slight selection pressure for small circuit size (Fig. 3). This
result highlights the role of modularly varying goals in preserving
modularity in the face of more optimal nonmodular circuits.

The same conclusions were also found for larger circuits and
more complex problems. For example, evolution of a six-input,
three-output problem, under modularly varying goals produced
circuits with modular architecture and network motifs (Fig. 4).
These adapted circuits included three separate modules that com-
pute XOR and were able to evolve to solve each of four modularly
varying goals.

In addition to electronic circuits, we applied our approach to a
second well studied computational model, pattern recognition
using neural networks (38). We used a genotype—phenotype map-
ping that ensures that the neural networks are feed-forward net-
works composed of four layers of nodes, linked by weighted edges.
Each node sums its weighted inputs and activates its outputs if the
sum exceeds a threshold.

In our pattern-recognition problem, neurons receive inputs from
a 4-pixel-wide by 2-pixel-high retina, in which each pixel can assume
avalue of 0 or 1. The goal is to recognize objects in the left and right
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sides of the retina (Fig. 5a). A left (or right) object exists if the four
left (or right) pixels match one of the patterns of a predefined set
(Fig. 5a). We chose an object recognition problem that is relatively
difficult to avoid trivial network solutions. The network has to
decide whether the input fits a certain combination of left and right
objects (for example, the presence of both left and right objects).
The output of the neural network is a node whose value is 0 or 1.

To evolve neural networks (30) we used a standard genetic
algorithm with crossovers and mutations. The environment con-
tained 100 different randomly chosen retina patterns. We started
with a population of random genomes. In each generation a
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Fig. 3.  An initially modular circuit rapidly loses modularity under fixed-goal
conditions. Each experiment started from a population of identical modular
circuits that had perfect fitness for goal G2 = (X XOR Y) OR (W XOR Z). At
generation zero, the population was placed under a fixed-goal evolution with
the same goal G2, with a selection pressure for small circuit size (a fitness penalty
of 0.2 for every additional gate above the 10th gate). Mean modularity measure
(+SE) vs. generations of best-fitness circuits is shown. Statistics are for 20 inde-
pendent experiments, with four different initial modular circuits that satisfy G2.

13776 | www.pnas.org/cgi/doi/10.1073/pnas.0503610102

: z mutations
: : mutations

v w

-

e w X Y vk w
uT

epoch 2:
(X XOR Y) OR (Z XOR W)

Y™ 2& w

Fig.2. Electronic circuits evolved under
a fixed goal and modularly varying goals.
(a) A typical circuit evolved by fixed-goal
evolution toward goal G1. Each gate in
the circuit represents a NAND gate. Sim-
ilar nonmodular solutions were found
for goal G2. (b) Circuits evolved with
out modularly varying goals evolution. Con-
nections that are rewired when the goal
isswitched are marked in red. (c) Another
example of a circuit evolved with modu-
larly varying goals evolution. The circuit
shows feedbacks between two of the
three lower NAND gates. (d) Modular
structure of the circuits evolved under
two modularly varying goals. The circuits are
composed of two XOR modules that in-
put into a third module that implements
an AND/OR function, depending on the
goal. Each XOR module is composed of six
nodes (two input nodes and four internal
ouTt gates) and display two feed-forward
loops and one diamond network motif.
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crossover was performed between two randomly chosen network
genomes with a probability P.. In addition, one connection, weight,
or threshold in each network in the population was changed with a
preset mutational probability Pn,. The fitness of a network was
defined by the fraction of correct recognitions in this environment.
Networks with higher fitness were replicated. In the fixed-goal
evolution problem, nearly perfect solutions (at least 95% cor-
rect recognition) were found after 21,000 (+29,000, —3,600)
generations.

A human engineer would easily notice the modularity in this
problem and design a network that is made of two modules, one that
analyzes the left side of the retina, and the other for the right side
of the retina. In contrast, the structure of the evolved networks was
not modular (Fig. 5b) (Om = 0.15 = 0.02). As in the case of
electronic circuits, fixed-goal evolution produces a nonmodular
network even though the problem itself is readily decomposable
into separate subgoals.

We then performed evolution under modularly varying goals by
evolving networks while switching between two goals. The two goals
used different combinations of subgoals defined on each half of the
retina (Fig. 5¢). The goals were switched every E = 20 generations.
Evolution under these varying goals rapidly yielded nearly perfect
networks with modular architecture (Qn, = 0.35 = 0.02), within
2,800 (+9,500, —600) generations. Two distinct (nonidentical)
modules evolved spontaneously in the network, each monitoring a
different side of the retina (Fig. Se). Thus, in contrast to fixed-goal
evolution, the modular structure of the problems was “learned” and
implemented in the solution, resulting in an intuitively understand-
able design.

The networks evolved under modularly varying goals were able
to adapt to nearly perfect solutions for each new goal, within about
three generations after the goal was switched. This evolvability was
caused by the fact that the evolved networks for the different goals
differed only slightly. For example, in many cases they differed in
the threshold value of a single neuron, allowing switching between
the networks with a single mutation (Fig. 5¢).

To detect network motifs, we calculated the significance of each
pattern in the network in comparison with a stringent ensemble of
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Fig. 4. An electronic circuit with six inputs and three outputs evolved under
modularly varying goals, with the following four goals: G1 = (A OR B; AAND G
B AND C); G2 = (A AND B; AORC, BAND C); G3 = (AAND B; AAND C; BOR Q);
and G4 = (A AND B; AAND C; B AND C), where A = XXORY, B=ZXORW, C =
Q XORR. The goal was changed every 20 generations in the order G1, G4, G2, G4,
G3, G4, G1, G4, etc. Perfect solutions that can rapidly switch between the goals
evolved within 1.2 X 10> = 8 X 10 generations. a, b, ¢, and d correspond to the
networks found sequentially under goals G1, G4, G2, and G4, respectively. The
lines and gates in red represent changes upon adaptation to each new goal.

randomized networks that preserved the degree sequence of each
node as well as the layered structure of the network (see Supporting
Text for details). We found that the neural networks evolved under
modularly varying goals show much more pronounced network
motifs than the networks evolved under a fixed goal. The motifs
included the bifan and diamond patterns (patterns 3 and 5 in Fig.
5d). The networks also showed specific antimotifs (patterns that
occur significantly less often than random networks) (subgraphs 1,
2, and 6 in Fig. 5d).

Discussion

In summary, we find that modularly varying goals can yield spon-
taneous evolution of modular network architectures with pro-
nounced network motifs. In contrast, the same evolutionary process
working under a fixed goal typically yields nonmodular solutions
with fewer network motifs.

Networks that evolve under modularly varying goals seem to
discover the basic subproblems common to the different goals and
to evolve a distinct structural module to implement each of these
subproblems. Evolution under modularly varying goals produces
networks that can rapidly adapt to each of the different goals by only
a few rewiring changes.

Not every set of changing goals leads to modular structures.
Networks evolved under randomly varying goals (with no common
subgoals) do not seem to evolve modular structure. In such cases,
when the goal changes, the networks take a relatively long time to
adapt to the new goal, as if it starts evolution from scratch. Under
modularly varying goals, in contrast, adaptation to the new goal is
greatly speeded up by the presence of the existing modules that
were useful for the previous goal.

Why do modularly varying goals speed up evolution (in terms of
the number of generations to reach perfect solution) when com-
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Fig. 5. Neural networks evolved for a pattern recognition task using fixed
goals and modularly varying goals. (a) The aim is to recognize objects in the
left and right sides of a 4-pixel-by-2-pixel retina. A left (or right) object exists
if the four left (or right) pixels match one of the patterns of a predefined set.
A left object is defined by three or more black pixels or one or two black pixels
in the left column only. A right object is defined in a similar way, with one or
two black pixels in the right column only. The goal is to identify when objects
exist at both sides of the retina (L AND R). (b) A network evolved under
fixed-goal evolution. Black/red lines represent positive/negative weights.
Thick lines are double weights. (c) A network evolved under modularly varying
goals evolution with two goals: L AND R, and L OR R. The network can rapidly
adapt each time the goal is switched, by changing a single threshold of the
lowest neuron (from t = 2 at the first goal to t = 1 at the second goal). In b and
¢, n indicates the number of neurons (nodes) in the network. (d) Four node
patterns and their significance in the evolved networks. Shown are Z-scores +
SE for =50 networks. Strong motifsin the modularly varying goal networks are
the bifan and diamond (patterns 3 and 5). Subgraphs were selected as in Fig.
1d. (e) Modular structure of the neuronal network evolved under modularly
varying goals. Two distinct modules each monitor one side of the retina, and
a third module processes their outputs.

pared with evolution under a fixed goal? One reason that fixed-goal
evolution is often slow is that the population becomes stuck in local
fitness maxima. Because the fitness landscape changes each time
that the goal changes, modularly varying goals can help move the
population from these local traps. Over the course of many goal
changes, modularly varying goals seem to guide the population
toward a region of network space that contains fitness peaks for
each of the goals in close proximity. This region seems to corre-
spond to modular networks.

In addition to their modular structure, the networks evolved
under modularly varying goals display significant network motifs.
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The same motifs are reused throughout each network in different
modules. Some of these motifs are also found in biological infor-
mation processing networks. For example, feed-forward loops and
bifans are found in transcription networks (7). Feed-forward loops,
bifans, and diamonds are found in signal transduction and synaptic
neuronal networks (7). In signal transduction networks (34) and the
neuronal network of C. elegans (39), multilayered feed-forward
patterns similar to those in Fig. 5c, are strong network motifs. An
example is multilayered protein kinase cascades, in which families
of kinases in each layer activate families of kinases in the next layer
(34, 40, 41).

One possible explanation for the origin of the motifs in the
evolved networks is that modular networks are locally denser than
nonmodular networks of the same size and connectivity. This local
density tends to increase the number of subgraphs (42). To test this
possibility, we evolved networks to reach the same modularity
measure Q as the networks evolved under modularly varying goals,
but with no information-processing goal (see Supporting Text). We
find that these modular networks have no significant network motifs
(Fig. 9). They show relatively abundant feedback loops that are
antimotifs in the networks evolved under modularly varying goals.
It therefore seems that the specific network motifs found in the
evolved networks are not merely caused by local density, but may
be useful building blocks for information processing.

How is evolution under modularly varying goals related to actual
biological evolution? One may suggest that organisms evolve in
environments that require a certain set of basic biological functions.
When environments change, the same functions are needed but in
different combinations. For example, consider the task of chemo-
taxis toward a nutrient (43, 44). Chemotaxis requires several
functions, including sensing the nutrient, computing the direction of
motion, moving the cell, and metabolizing the nutrient. Bacteria
evolved specific gene modules to perform each of these tasks (e.g.,
a motor module, a signal-processing module, a module that trans-
ports the nutrient into the cell, etc.). When environments changed,
these modules adapted over evolution to sense and chemotax
toward other nutrients. Had evolution been in a fixed environment,
perhaps a more optimal solution would have mixed the genes for
these different tasks (e.g., a motor that can also sense and transport
the nutrient into the cell), resulting in a nonmodular design.
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An additional biological example occurs in development. Dif-
ferent cells in the developing embryo take on different fates. Each
cell type needs to solve a similar set of problems: expressing a set
of genes in response to a given time-dependent profile of a set of
extracellular signals. However, in each cell type, the identity of the
input signals and the output genes is different. Thus, in develop-
ment, cells need to perform essentially the same computations on
varying inputs and output: a modularly varying goal. The solution
found by evolution is a modular design where signal transduction
pathways (such as mitogen-activated protein kinase cascades),
which are common to many cell types, hook up to specific receptors
and transcription factors that are cell type specific (45). This design
allows simple rewiring of the same pathways to work with diverse
inputs and outputs in different cell types (46). Over evolutionary
time scales, this design allows the addition of new cell types without
the need to evolve dedicated new pathways for each input and
output (4, 18).

Modularity also has interesting consequences for gene duplica-
tion. Gene duplication can help to duplicate a module, but it cannot
explain why a modular structure would persist if a more optimal
nonmodular structure exists. For example, in a fixed-goal problem,
we saw that an initially modular network rapidly lost modularity and
approached one of many different nonmodular solutions, given
pressure to minimize the number of components (Fig. 3). Our
results help explain how modules are maintained, because of their
benefit in a changing environment. Once modules are established,
gene duplication can be effective in generating new modules with
new functions.

It would be interesting to use the present approach to try to
improve evolution of engineered systems. One might be able to use
modularly varying goals in conjunction with other approaches
mentioned in the Introduction to enhance the modularity and
regularity of evolved designs.

In summary, this study presents a possible mechanism for
spontaneous evolution of modularity and network motifs. It will be
important to extend this study to understand how evolution could
generate additional design features of biological systems (19).
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